CS6200 Information Retrieval

PageRank Continued

with slides from Hinrich Schütze and Christina Lioma

Exercise: Assumptions underlying PageRank

- Assumption 1: A link on the web is a quality signal the
 - author of the link thinks that the linked-to page is high-quality.
- Assumption 2: The anchor text describes the content of the linked-to page.
- Is assumption 1 true in general?
- Is assumption 2 true in general?

 A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.

- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- Google introduced a new weighting function in January 2007
 - that fixed many Google bombs.

- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- Google introduced a new weighting function in January 2007
 - that fixed many Google bombs.
- Still some remnants: [dangerous cult] on Google, Bing, Yahoo

- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- Google introduced a new weighting function in January 2007
 - that fixed many Google bombs.
- Still some remnants: [dangerous cult] on Google, Bing, Yahoo
 - Coordinated link creation by those who dislike the Church of Scientology

- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- Google introduced a new weighting function in January 2007
 - that fixed many Google bombs.
- Still some remnants: [dangerous cult] on Google, Bing, Yahoo
 - Coordinated link creation by those who dislike the Church of Scientology
- Defused Google bombs: [dumb motherf...], [who is a failure?], [evil empire]

Origins of PageRank: Citation analysis (1)

- Citation analysis: analysis of citations in the scientific literature.
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."
- We can view "Miller (2001)" as a hyperlink linking two scientific articles.
- One application of these "hyperlinks" in the scientific literature:
 - Measure the similarity of two articles by the overlap of other articles citing them.
 - This is called cocitation similarity.
 - Cocitation similarity on the web: Google's "find pages like this" or "Similar" feature.

Origins of PageRank: Citation analysis (2)

- Another application: Citation frequency can be used to measure the impact of an article.
 - Simplest measure: Each article gets one vote not very accurate.
- On the web: citation frequency = inlink count
 - A high inlink count does not necessarily mean high quality ...
 - ... mainly because of link spam.
- Better measure: weighted citation frequency or citation rank
 - An article's vote is weighted according to its citation impact.
 - Circular? No: can be formalized in a well-defined way.

Origins of PageRank: Citation analysis (3)

- Better measure: weighted citation frequency or citation rank.
- This is basically PageRank.
- PageRank was invented in the context of citation analysis by Pinsker and Narin in the 1960s.
- Citation analysis is a big deal: The budget and salary of this lecturer are / will be determined by the impact of his publications!

Origins of PageRank: Summary

- We can use the same formal representation for
 - citations in the scientific literature
 - hyperlinks on the web
- Appropriately weighted citation frequency is an excellent measure of quality ...
 - ... both for web pages and for scientific publications.
- Next: PageRank algorithm for computing weighted citation frequency on the web.

Model behind PageRank: Random walk

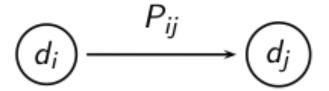
- Imagine a web surfer doing a random walk on the web
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- In the steady state, each page has a long-term visit rate.
- This long-term visit rate is the page's PageRank.
- PageRank = long-term visit rate = steady state probability.

 A Markov chain consists of N states, plus an N×N transition probability matrix P.

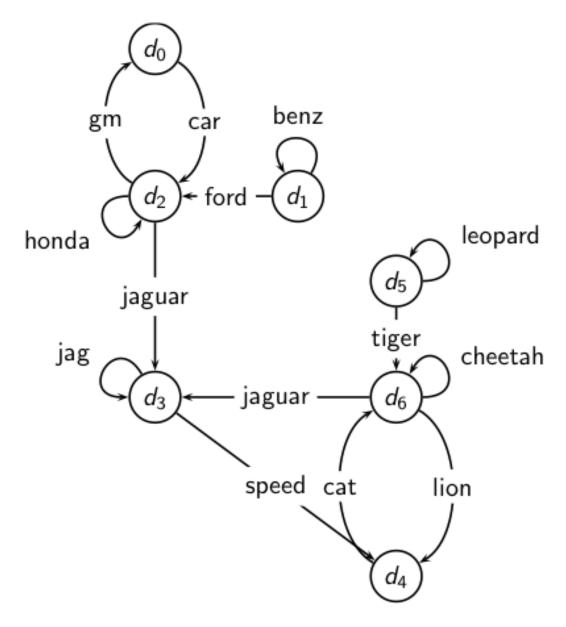
- A Markov chain consists of N states, plus an N×N transition probability matrix P.
- state = page

- A Markov chain consists of N states, plus an N×N transition probability matrix P.
- state = page
- At each step, we are on exactly one of the pages.

- A Markov chain consists of N states, plus an N×N transition probability matrix P.
- state = page
- At each step, we are on exactly one of the pages.
- For $1 \le i, j \ge N$, the matrix entry P_{ij} tells us the probability of j being the next page, given we are currently on page i.
- Clearly, for all i, $\sum_{j=1}^{N} P_{ij} = 1$



Example web graph



Link matrix for example

Link matrix for example

	d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0	0	1	0	0	0	0
d_1	0	1	1	0	0	0	0
d_2	1	0	1	1	0	0	0
d_3	0	0	0	1	1	0	0
d_4	0	0	0	0	0	0	1
d_5	0	0	0	0	0	1	1
d_6	0	0	0	1	1	0	1

Transition probability matrix *P* for example

Transition probability matrix *P* for example

	d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0.00	0.00	1.00	0.00	0.00	0.00	0.00
d_1	0.00	0.50	0.50	0.00	0.00	0.00	0.00
d_2	0.33	0.00	0.33	0.33	0.00	0.00	0.00
d_3	0.00	0.00	0.00	0.50	0.50	0.00	0.00
d_4	0.00	0.00	0.00	0.00	0.00	0.00	1.00
d_5	0.00	0.00	0.00	0.00	0.00	0.50	0.50
d_6	0.00	0.00	0.00	0.33	0.33	0.00	0.33

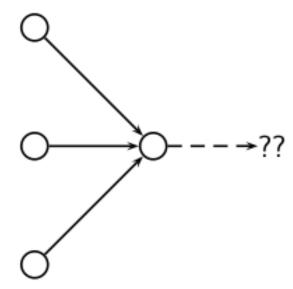
Recall: PageRank = long-term visit rate.

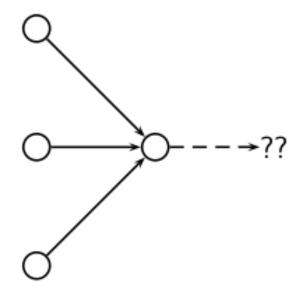
- Recall: PageRank = long-term visit rate.
- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.

- Recall: PageRank = long-term visit rate.
- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.
- Next: what properties must hold of the web graph for the long-term visit rate to be well defined?

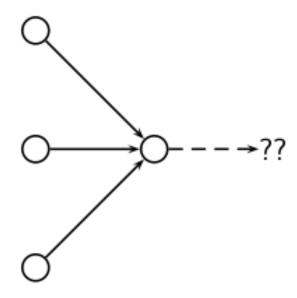
- Recall: PageRank = long-term visit rate.
- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.
- Next: what properties must hold of the web graph for the long-term visit rate to be well defined?
- The web graph must correspond to an ergodic Markov chain.

- Recall: PageRank = long-term visit rate.
- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.
- Next: what properties must hold of the web graph for the long-term visit rate to be well defined?
- The web graph must correspond to an ergodic Markov chain.
- First a special case: The web graph must not contain dead ends.

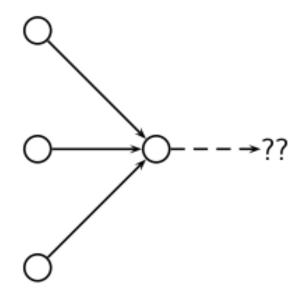




• The web is full of dead ends.



- The web is full of dead ends.
- Random walk can get stuck in dead ends.



- The web is full of dead ends.
- Random walk can get stuck in dead ends.
- If there are dead ends, long-term visit rates are not well-defined (or non-sensical).

Teleporting - to get us of dead ends

Teleporting - to get us of dead ends

 At a dead end, jump to a random web page with prob.

1/ N.

 At a dead end, jump to a random web page with prob.

1/N.

 At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of 0.1/N).

- At a dead end, jump to a random web page with prob.
 - 1/N.
- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of 0.1/N).
- With remaining probability (90%), go out on a random hyperlink.

 At a dead end, jump to a random web page with prob.

1/N.

- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of 0.1/N).
- With remaining probability (90%), go out on a random hyperlink.
 - For example, if the page has 4 outgoing links: randomly choose one with probability (1-0.10)/4=0.225

 At a dead end, jump to a random web page with prob.

1/N.

- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of 0.1/N).
- With remaining probability (90%), go out on a random hyperlink.
 - For example, if the page has 4 outgoing links: randomly choose one with probability (1-0.10)/4=0.225
- 10% is a parameter, the teleportation rate.

 At a dead end, jump to a random web page with prob.

1/N.

- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of 0.1/N).
- With remaining probability (90%), go out on a random hyperlink.
 - For example, if the page has 4 outgoing links: randomly choose one with probability (1-0.10)/4=0.225
- 10% is a parameter, the teleportation rate.
- Note: "jumping" from dead end is independent of teleportation rate.

With teleporting, we cannot get stuck in a dead end.

- With teleporting, we cannot get stuck in a dead end.
- But even without dead ends, a graph may not have well-defined long-term visit rates.

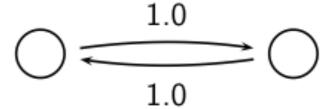
- With teleporting, we cannot get stuck in a dead end.
- But even without dead ends in the original graph, we may not have well-defined long-term visit rates.
- More generally, we require that the Markov chain be ergodic.

 A Markov chain is ergodic if it is irreducible and aperiodic.

- A Markov chain is ergodic if it is irreducible and aperiodic.
- Irreducibility. Roughly: there is a path from any other page.

- A Markov chain is ergodic if it is irreducible and aperiodic.
- Irreducibility. Roughly: there is a path from any other page.
- Aperiodicity. Roughly: The pages cannot be partitioned such that the random walker visits the partitions sequentially.

- A Markov chain is ergodic if it is irreducible and aperiodic.
- Irreducibility. Roughly: there is a path from any other page.
- Aperiodicity. Roughly: The pages cannot be partitioned such that the random walker visits the partitions sequentially.
- A non-ergodic Markov chain:



• Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.
- Teleporting makes the web graph ergodic.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.
- Teleporting makes the web graph ergodic.
- Web-graph+teleporting has a steady-state probability distribution.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.
- Teleporting makes the web graph ergodic.
- Web-graph+teleporting has a steady-state probability distribution.
- Each page in the web-graph+teleporting has a PageRank.

• A probability (row) vector $\vec{x} = (x_1, ..., x_N)$ tells us where the random walk is at any point.

- A probability (row) vector $x = (x_1, ..., x_N)$ tells us where the random walk is at any point.
- Example (0 0 0 ... 1 ... 0 0 0)
 1 2 3 ... i ... N-2 N-1 N

• A probability (row) vector $x = (x_1, ..., x_N)$ tells us where the random walk is at any point.

```
    Example ( 0 0 0 ... 1 ... 0 0 0 )
    1 2 3 ... i ... N-2 N-1 N
```

More generally: the random walk is on the page i with probability x_i.

- A probability (row) vector $x = (x_1, ..., x_N)$ tells us where the random walk is at any point.
- Example (0 0 0 ... 1 ... 0 0 0)
 1 2 3 ... i ... N-2 N-1 N
- More generally: the random walk is on the page i with probability x_i.
- Example:

```
( 0.05 0.01 0.0 ... 0.2 ... 0.01 0.05 0.03
1 2 3 ... i ... N-2 N-1 N
```

- A probability (row) vector $x = (x_1, ..., x_N)$ tells us where the random walk is at any point.
- Example (0 0 0 ... 1 ... 0 0 0)
 1 2 3 ... i ... N-2 N-1 N
- More generally: the random walk is on the page i with probability x_i.
- Example:

```
( 0.05 \ 0.01 \ 0.0 \ ... \ 0.2 \ ... \ 0.01 \ 0.05 \ 0.03 \ )
```

 $\sum X_i = 1$

Change in probability vector

• If the probability vector is $\vec{x} = (x_1, ..., x_N)$, at this step, what is it at the next step?

Change in probability vector

- If the probability vector is $\vec{x} = (x_1, ..., x_N)$, at this step, what is it at the next step?
- Recall that row i of the transition probability matrix
 P tells us where we go next from state i.

Change in probability vector

- If the probability vector is $\vec{x} = (x_1, ..., x_N)$, at this step, what is it at the next step?
- Recall that row i of the transition probability matrix
 P tells us where we go next from state i.
- So from \vec{x} , our next state is distributed as $\vec{x}P$.

• The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ of probabilities.

- The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ of probabilities.
- (We use π to distinguish it from the notation for the probability vector \vec{x} .)

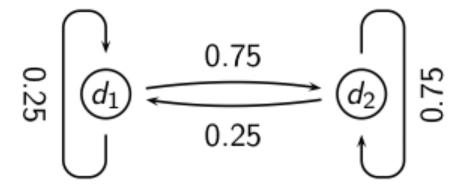
- The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ of probabilities.
- (We use π to distinguish it from the notation for the probability vector \vec{x} .)
- π is the long-term visit rate (or PageRank) of page i.

- The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ of probabilities.
- (We use π to distinguish it from the notation for the probability vector x.)
- π is the long-term visit rate (or PageRank) of page i.
- So we can think of PageRank as a very long vector one entry per page.

Steady-state distribution: Example

Steady-state distribution: Example

What is the PageRank / steady state in this example?



	X_1 $P_{\ell}(d_1)$	X_2 $P_{+}(d_2)$		
			$P_{11} = 0.25$ $P_{21} = 0.25$	$P_{12} = 0.75$ $P_{22} = 0.75$
t_0 t_1	0.25	0.75		

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_{t}(d_1)$	X_2 $P_{+}(d_2)$		
			$P_{11} = 0.25$ $P_{21} = 0.25$	$P_{12} = 0.75$ $P_{22} = 0.75$
t_0 t_1	0.25	0.75	0.25	0.75

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_{\ell}(d_1)$	X_2 $P_{t}(d_2)$		
			$P_{11} = 0.25$	$P_{12} = 0.75$
			$P_{21} = 0.25$	$P_{22} = 0.75$
			<u> </u>	ZZ
$\overline{t_0}$	0.25	0.75	0.25	0.75

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_{+}(d_1)$	X_2 $P_{t}(d_2)$		
			$P_{11} = 0.25$ $P_{21} = 0.25$	$P_{12} = 0.75$ $P_{22} = 0.75$
t_0 t_1	0.25 0.25	0.75 0.75	0.25 <i>(conv</i>	0.75 ergence)

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

In other words: how do we compute PageRank?

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is x, then the distribution in the next step is xP.

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is x, then the distribution in the next step is xP.
- But $\vec{\pi}$ is the steady state!

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is x, then the distribution in the next step is xP.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is x, then the distribution in the next step is xP.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives \vec{u} us π .

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is x, then the distribution in the next step is xP.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives us π .
- π is the principal left eigenvector for P ...

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is x, then the distribution in the next step is xP.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives \vec{u} us π .
- π is the principal left eigenvector for P ...
- ... that is, π is the left eigenvector with the largest eigenvalue.

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is x, then the distribution in the next step is xP.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives us π .
- π is the principal left eigenvector for P ...
- ... that is, π is the left eigenvector with the largest eigenvalue.
- All transition probability matrices have largest eigenvalue

Start with any distribution x, e.g., uniform distribution

- Start with any distribution x, e.g., uniform distribution
- After one step, we're $\vec{a}t xP$.

- Start with any distribution x, e.g., uniform distribution
- After one step, we're at xP.
- After two steps, we're $\bar{a}t xP^2$.

- Start with any distribution x, e.g., uniform distribution
- After one step, we're at xP.
- After two steps, we're $\bar{a}t xP^2$.
- After k steps, we're at xP^k .

- Start with any distribution x, e.g., uniform distribution
- After one step, we're at xP.
- After two steps, we're $\bar{a}t xP^2$.
- After k steps, we're $\bar{a}t xP^k$.
- Algorithm: multiply x by increasing powers of P until convergence.

- Start with any distribution x, e.g., uniform distribution
- After one step, we're at xP.
- After two steps, we're $\bar{a}t xP^2$.
- After k steps, we're $\bar{a}t xP^k$.
- Algorithm: multiply x by increasing powers of P until convergence.
- This is called the power method.

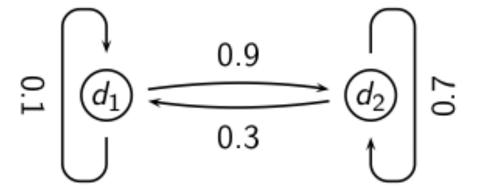
- Start with any distribution x, e.g., uniform distribution
- After one step, we're at xP.
- After two steps, we're $\bar{a}t xP^2$.
- After k steps, we're $\bar{a}t xP^k$.
- Algorithm: multiply x by increasing powers of P until convergence.
- This is called the power method.
- Recall: regardless of where we start, we eventually reach the steady state π .

- Start with any distribution x, e.g., uniform distribution
- After one step, we're at xP.
- After two steps, we're $\bar{a}t xP^2$.
- After k steps, we're at xP^k .
- Algorithm: multiply x by increasing powers of P until convergence.
- This is called the power method.
- Recall: regardless of where we start, we eventually reach the steady state π .
- Thus: we will eventually (in asymptotia) reach the steady state.

Power method: Example

Power method: Example

What is the PageRank / steady state in this example?



	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$			
		<u> </u>	$P_{11} = 0.1$		
			$P_{21} = 0.3$	$P_{22} = 0.7$	
t_o	0	1			$=\vec{x}P$
t_1					$=\vec{x}P^2$
t_2					$= \hat{\mathbf{x}}P^3$
t_3					$=\vec{x}P^4$
					• • •
$oldsymbol{t}_{\scriptscriptstyle\infty}$					= xP ∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$			
			$P_{11} = 0.1$ $P_{21} = 0.3$		
t ₀ t ₁ t ₂ t ₃	0	1	0.3	0.7	$= \overrightarrow{x}P$ $= \overrightarrow{x}P^{2}$ $= \overrightarrow{x}P^{3}$ $= \overrightarrow{x}P^{4}$
$t_{\scriptscriptstyle \infty}$					= xP ∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1	x_{2}			
	$P_t(d_1)$	$P_t(d_2)$			
			$P_{11} = 0.1$	$P_{12} = 0.9$	
			$P_{21} = 0.3$	$P_{22} = 0.7$	
t_o	0	1	0.3	0.7	$= \vec{x}P$
t_1		0.7			$=\vec{x}P^2$
t_2					$= \chi P^3$
t_3					$=\vec{x}P^4$
					• • •
$t_{\scriptscriptstyle \infty}$					= xP ∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	\mathbf{x}_1	X_2			
	$P_t(d_1)$	$P_t(d_2)$			
			$P_{11} = 0.1$	$P_{12} = 0.9$	
			$P_{21} = 0.3$	$P_{22} = 0.7$	
t_o	0	1	0.3	0.7	$=\vec{x}P$
t_0 t_1	0.3	0.7	0.24	0.76	$=\vec{x}P^2$
t_2					$= \chi P^3$
<i>t</i> ₃					$=\vec{x}P^4$
					• • •
$oldsymbol{t}_{\scriptscriptstyle\infty}$					= xP ∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1	x_{2}			
	$P_t(d_1)$	$P_t(d_2)$			
			$P_{11} = 0.1$	$P_{12} = 0.9$	
			$P_{21} = 0.3$	$P_{22} = 0.7$	
t_o	0	1	0.3	0.7	$= \vec{x}P$
t_1	0.3	0.7	0.24	0.76	$=\vec{x}P^2$
t_2	0.24	0.76			$= \hat{\mathbf{x}}P^3$
<i>t</i> ₃					$= \vec{x}P^4$
					• • •
$t_{\scriptscriptstyle \infty}$					$=\vec{x}P^{\infty}$

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1	x_{2}			
	$P_t(d_1)$	$P_t(d_2)$			
			$P_{11} = 0.1$	$P_{12} = 0.9$	
			$P_{21} = 0.3$	$P_{22} = 0.7$	
t_o	0	1	0.3	0.7	$= \overset{\rightarrow}{\mathbf{x}} \mathbf{P}$
t_1	0.3	0.7	0.24	0.76	$=\vec{x}P^2$
t_2	0.24	0.76	0.252	0.748	$= xP^3$
<i>t</i> ₃					= X P ⁴
					• • •
$t_{\scriptscriptstyle \infty}$					= xP ∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1	x_{2}			
	$P_t(d_1)$	$P_t(d_2)$			
			$P_{11} = 0.1$	$P_{12} = 0.9$	
			$P_{21} = 0.3$	$P_{22} = 0.7$	
t_o	0	1	0.3	0.7	$= \vec{x}P$
t_1	0.3	0.7	0.24	0.76	$=\vec{x}P^2$
t_2	0.24	0.76	0.252	0.748	$= xP^3$
<i>t</i> ₃	0.252	0.748			$= \vec{x}P^4$
					• • •
$t_{\scriptscriptstyle \infty}$					= xP ∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1	x_{2}			
	$P_t(d_1)$	$P_t(d_2)$			
			$P_{11} = 0.1$	$P_{12} = 0.9$	
			$P_{21} = 0.3$	$P_{22} = 0.7$	
t_o	0	1	0.3	0.7	$= \vec{x}P$
t ₁	0.3	0.7	0.24	0.76	$=\vec{x}P^2$
t_2	0.24	0.76	0.252	0.748	$= xP^3$
t ₃	0.252	0.748	0.2496	0.7504	$=\vec{x}P^4$
					• • •
$oldsymbol{t}_{\scriptscriptstyle\infty}$					= xP ∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1	x_2			
	$P_t(d_1)$	$P_t(d_2)$			
			$P_{11} = 0.1$	$P_{12} = 0.9$	
			$P_{21} = 0.3$	$P_{22} = 0.7$	
t_o	0	1	0.3	0.7	$= \vec{x}P$
t_1	0.3	0.7	0.24	0.76	$=\vec{x}P^2$
t_2	0.24	0.76	0.252	0.748	$= xP^3$
<i>t</i> ₃	0.252	0.748	0.2496	0.7504	$= \dot{\mathbf{x}} P^4$
			•	• •	• • •
$t_{\scriptscriptstyle \infty}$					= xP ∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

Computing PageRank: Power Example

	X_1	x_2			
	$P_t(d_1)$	$P_t(d_2)$			
			$P_{11} = 0.1$	$P_{12} = 0.9$	
			$P_{21} = 0.3$	$P_{22} = 0.7$	
t_o	0	1	0.3	0.7	$= \vec{x}P$
t ₁	0.3	0.7	0.24	0.76	$=\vec{x}P^2$
t_2	0.24	0.76	0.252	0.748	$= xP^3$
<i>t</i> ₃	0.252	0.748	0.2496	0.7504	$= \vec{x} P^4$
			•	• •	• • •
$t_{\scriptscriptstyle \infty}$	0.25	0.75			= xP ∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

Computing PageRank: Power Example

	X_1	X_2			
	$P_t(d_1)$	$P_t(d_2)$			
			$P_{11} = 0.1$	$P_{12} = 0.9$	
			$P_{21} = 0.3$	$P_{22} = 0.7$	
t_o	0	1	0.3	0.7	$= \vec{x}P$
t_1	0.3	0.7	0.24	0.76	$=\vec{x}P^2$
t_2	0.24	0.76	0.252	0.748	$= xP^3$
<i>t</i> ₃	0.252	0.748	0.2496	0.7504	= ₹ <i>P</i> ⁴
			•	• •	• • •
$t_{\scriptscriptstyle \infty}$	0.25	0.75	0.25	0.75	= xP ∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

Computing PageRank: Power Example

	X_1	x_{2}			
	$P_t(d_1)$	$P_t(d_2)$			
			$P_{11} = 0.1$	$P_{12} = 0.9$	
			$P_{21} = 0.3$	$P_{22} = 0.7$	
t_o	0	1	0.3	0.7	= xP
t_1	0.3	0.7	0.24	0.76	$=\stackrel{\rightarrow}{x}P^2$
t_2	0.24	0.76	0.252	0.748	$= \vec{x} P^3$
t ₃	0.252	0.748	0.2496	0.7504	$= \stackrel{\rightarrow}{x} P^4$
t ∞	0.25	0.75	0.25	0.75	= xP ∞

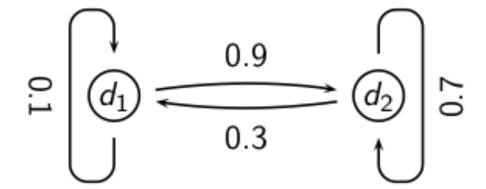
PageRank vector
$$\vec{=} \pi = (\pi_1, \pi_2) = (0.25, 0.75)$$

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

Power method: Example

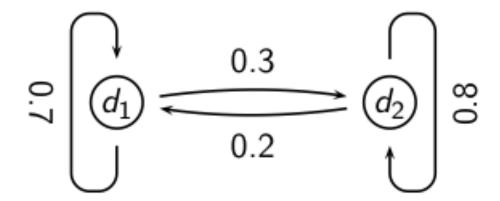
What is the PageRank / steady state in this example?



• The steady state distribution (= the PageRanks) in this example are 0.25 for d_1 and 0.75 for d_2 .

Exercise: Compute PageRank using power method

Exercise: Compute PageRank using power method



	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t_0 t_1 t_2 t_3	0	1		
t _∞				

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t ₀ t ₁ t ₂ t ₃	0	1	0.2	0.8
t				

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$
t_o	0	1	$P_{21} = 0.2$ 0.2	$P_{22} = 0.8$
•	0.2	0.8		
<i>t</i> ₂				
<i>t</i> ₃				
$t_{\scriptscriptstyle \infty}$				

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$
			$P_{21} = 0.2$	$P_{22} = 0.8$
t_o	0	1	0.2	0.8
t_0 t_1	0.2	0.8	0.3	0.7
t_2				
<i>t</i> ₃				
t _∞				

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.7$	$P_{12} = 0.3$
			$P_{21} = 0.2$	$P_{22} = 0.8$
t_o	0	1	0.2	0.8
	0.2	0.8	0.3	0.7
t_2	0.3	0.7		
<i>t</i> ₃				
$t_{\scriptscriptstyle \infty}$				

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.7$	$P_{12} = 0.3$
			$P_{21} = 0.2$	$P_{22} = 0.8$
t_o	0	1	0.2	0.8
t_1	0.2	0.8	0.3	0.7
t_2	0.3	0.7	0.35	0.65
<i>t</i> ₃				
$t_{\scriptscriptstyle \infty}$				

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.7$	$P_{12} = 0.3$
			$P_{21} = 0.2$	$P_{22} = 0.8$
t_o	0	1	0.2	0.8
t_1	0.2	0.8	0.3	0.7
t_2	0.3	0.7	0.35	0.65
<i>t</i> ₃	0.35	0.65		
t _∞				

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.7$	$P_{12} = 0.3$
			$P_{21} = 0.2$	$P_{22} = 0.8$
t_o	0	1	0.2	0.8
t ₁	0.2	0.8	0.3	0.7
t_2	0.3	0.7	0.35	0.65
<i>t</i> ₃	0.35	0.65	0.375	0.625
$t_{\scriptscriptstyle \infty}$				

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.7$	$P_{12} = 0.3$
			$P_{21} = 0.2$	$P_{22} = 0.8$
t_o	0	1	0.2	0.8
t ₁	0.2	0.8	0.3	0.7
t_2	0.3	0.7	0.35	0.65
<i>t</i> ₃	0.35	0.65	0.375	0.625
$t_{\scriptscriptstyle \infty}$				

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	x_2 $P_t(d_2)$		
			$P_{11} = 0.7$	$P_{12} = 0.3$
			$P_{21} = 0.2$	$P_{22} = 0.8$
t_o	0	1	0.2	0.8
t ₁	0.2	0.8	0.3	0.7
t_2	0.3	0.7	0.35	0.65
<i>t</i> ₃	0.35	0.65	0.375	0.625
$oldsymbol{t}_{\scriptscriptstyle\infty}$	0.4	0.6		

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.7$	$P_{12} = 0.3$
			$P_{21} = 0.2$	$P_{22} = 0.8$
t_o	0	1	0.2	0.8
t_1	0.2	0.8	0.3	0.7
t_2	0.3	0.7	0.35	0.65
<i>t</i> ₃	0.35	0.65	0.375	0.625
t _∞	0.4	0.6	0.4	0.6

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

Preprocessing

- Preprocessing
 - Given graph of links, build matrix P

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute π

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute π
 - $\vec{\pi_i}$ is the PageRank of page *i*.

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute π
 - $\vec{\pi_i}$ is the PageRank of page *i*.
- Query processing

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute π
 - $\vec{\pi_i}$ is the PageRank of page *i*.
- Query processing
 - Retrieve pages satisfying the query

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute π
 - $\vec{\pi_i}$ is the PageRank of page *i*.
- Query processing
 - Retrieve pages satisfying the query
 - Rank them by their PageRank

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute π
 - $\vec{\pi_i}$ is the PageRank of page *i*.
- Query processing
 - Retrieve pages satisfying the query
 - Rank them by their PageRank
 - Return reranked list to the user

PageRank issues

- Real surfers are not random surfers.
 - Examples of nonrandom surfing: back button, short vs. long paths, bookmarks, directories - and search!
 - → Markov model is not a good model of surfing.
 - But it's good enough as a model for our purposes.
- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.
 - Consider the query [video service].
 - The Yahoo home page (i) has a very high PageRank and (ii) contains both video and service.
 - If we rank all pages containing the query terms according to PageRank, then the Yahoo home page would be top-ranked.
 - Clearly not desirable.

How important is PageRank?

- Frequent claim: PageRank is the most important component of web ranking.
- The reality:
 - There are several components that are at least as important: e.g., anchor text, phrases, proximity, tiered indexes ...
 - Rumor has it that PageRank in his original form (as presented here) now has a negligible impact on ranking!
 - However, variants of a page's PageRank are still an essential part of ranking.
 - Addressing link spam is difficult and crucial.