CS6200
 Information Retrieval

PageRank Continued

with slides from
Hinrich Schütze and Christina Lioma

Exercise: Assumptions underlying PageRank

- Assumption 1: A link on the web is a quality signal the
author of the link thinks that the linked-to page is high-quality.
- Assumption 2: The anchor text describes the content of the linked-to page.
- Is assumption 1 true in general?
- Is assumption 2 true in general?

Google bombs

Google bombs

- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.

Google bombs

- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- Google introduced a new weighting function in January 2007
that fixed many Google bombs.

Google bombs

- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- Google introduced a new weighting function in January 2007
that fixed many Google bombs.
- Still some remnants: [dangerous cult] on Google, Bing, Yahoo

Google bombs

" A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.

- Google introduced a new weighting function in January 2007
that fixed many Google bombs.
- Still some remnants: [dangerous cult] on Google, Bing, Yahoo
- Coordinated link creation by those who dislike the Church of Scientology

Google bombs

" A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.

- Google introduced a new weighting function in January 2007
that fixed many Google bombs.
- Still some remnants: [dangerous cult] on Google, Bing, Yahoo
- Coordinated link creation by those who dislike the Church of Scientology
- Defused Google bombs: [dumb motherf...], [who is a failure?], [evil empire]

Origins of PageRank: Citation analysis (1)

- Citation analysis: analysis of citations in the scientific literature.
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."
- We can view "Miller (2001)" as a hyperlink linking two scientific articles.
- One application of these "hyperlinks" in the scientific literature:
- Measure the similarity of two articles by the overlap of other articles citing them.
- This is called cocitation similarity.
- Cocitation similarity on the web: Google's "find pages like this" or "Similar" feature.

Origins of PageRank: Citation analysis (2)

- Another application: Citation frequency can be used to measure the impact of an article .
- Simplest measure: Each article gets one vote - not very accurate.
- On the web: citation frequency = inlink count
- A high inlink count does not necessarily mean high quality
- ... mainly because of link spam.
- Better measure: weighted citation frequency or citation rank
- An article's vote is weighted according to its citation impact.
- Circular? No: can be formalized in a well-defined way.

Origins of PageRank: Citation analysis (3)

- Better measure: weighted citation frequency or citation rank.
- This is basically PageRank.
- PageRank was invented in the context of citation analysis by Pinsker and Narin in the 1960s.
- Citation analysis is a big deal: The budget and salary of this lecturer are / will be determined by the impact of his publications!

Origins of PageRank: Summary

- We can use the same formal representation for
- citations in the scientific literature
- hyperlinks on the web
- Appropriately weighted citation frequency is an excellent measure of quality ...
- ... both for web pages and for scientific publications.
- Next: PageRank algorithm for computing weighted citation frequency on the web.

Model behind PageRank: Random walk

- Imagine a web surfer doing a random walk on the web
- Start at a random page
- At each step, go out of the current page along one of the links on that page, equiprobably
- In the steady state, each page has a long-term visit rate.
- This long-term visit rate is the page's PageRank.
- PageRank = long-term visit rate = steady state probability.

Formalization of random walk: Markov chains

Formalization of random walk: Markov chains

- A Markov chain consists of N states, plus an $N \times N$ transition probability matrix P.

Formalization of random walk: Markov chains

- A Markov chain consists of N states, plus an $N \times N$ transition probability matrix P.
- state = page

Formalization of random walk: Markov chains

- A Markov chain consists of N states, plus an $N \times N$ transition probability matrix P.
- state = page
- At each step, we are on exactly one of the pages.

Formalization of random walk: Markov chains

- A Markov chain consists of N states, plus an $N \times N$ transition probability matrix P.
- state = page
- At each step, we are on exactly one of the pages.
- For $1 \leq i, j \geq N$, the matrix entry $P_{i j}$ tells us the probability of j being the next page, given we are currently on page i.
- Clearly, for all i, $\sum_{j=1}^{N} P_{j j}=1$

Example web graph

Link matrix for example

Link matrix for example

	d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
d_{0}	0	0	1	0	0	0	0
d_{1}	0	1	1	0	0	0	0
d_{2}	1	0	1	1	0	0	0
d_{3}	0	0	0	1	1	0	0
d_{4}	0	0	0	0	0	0	1
d_{5}	0	0	0	0	0	1	1
d_{6}	0	0	0	1	1	0	1

Transition probability matrix P for example

Transition probability matrix P for example

	d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
d_{0}	0.00	0.00	1.00	0.00	0.00	0.00	0.00
d_{1}	0.00	0.50	0.50	0.00	0.00	0.00	0.00
d_{2}	0.33	0.00	0.33	0.33	0.00	0.00	0.00
d_{3}	0.00	0.00	0.00	0.50	0.50	0.00	0.00
d_{4}	0.00	0.00	0.00	0.00	0.00	0.00	1.00
d_{5}	0.00	0.00	0.00	0.00	0.00	0.50	0.50
d_{6}	0.00	0.00	0.00	0.33	0.33	0.00	0.33

Long-term visit rate

Long-term visit rate

- Recall: PageRank = long-term visit rate.

Long-term visit rate

- Recall: PageRank = long-term visit rate.
- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.

Long-term visit rate

- Recall: PageRank = long-term visit rate.
- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.
- Next: what properties must hold of the web graph for the long-term visit rate to be well defined?

Long-term visit rate

- Recall: PageRank = long-term visit rate.
- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.
- Next: what properties must hold of the web graph for the long-term visit rate to be well defined?
- The web graph must correspond to an ergodic Markov chain.

Long-term visit rate

- Recall: PageRank = long-term visit rate.
- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.
- Next: what properties must hold of the web graph for the long-term visit rate to be well defined?
- The web graph must correspond to an ergodic Markov chain.
- First a special case: The web graph must not contain dead ends.

Dead ends

Dead ends

Dead ends

- The web is full of dead ends.

Dead ends

- The web is full of dead ends.
- Random walk can get stuck in dead ends.

Dead ends

- The web is full of dead ends.
- Random walk can get stuck in dead ends.
- If there are dead ends, long-term visit rates are not well-defined (or non-sensical).

Teleporting - to get us of dead ends

Teleporting - to get us of dead ends

- At a dead end, jump to a random web page with prob.
1/N.

Teleporting - to get us of dead ends

- At a dead end, jump to a random web page with prob.
1/N.
- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of $0.1 / \mathrm{N}$).

Teleporting - to get us of dead ends

- At a dead end, jump to a random web page with prob.
$1 / N$.
- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of $0.1 / \mathrm{N}$).
- With remaining probability (90%), go out on a random hyperlink.

Teleporting - to get us of dead ends

- At a dead end, jump to a random web page with prob.
$1 / N$.
- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of $0.1 / \mathrm{N}$).
- With remaining probability (90%), go out on a random hyperlink.
- For example, if the page has 4 outgoing links: randomly choose one with probability (1-0.10)/4=0.225

Teleporting - to get us of dead ends

- At a dead end, jump to a random web page with prob.
$1 / N$.
- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of $0.1 / \mathrm{N}$).
- With remaining probability (90%), go out on a random hyperlink.
- For example, if the page has 4 outgoing links: randomly choose one with probability (1-0.10)/4=0.225
- 10% is a parameter, the teleportation rate.

Teleporting - to get us of dead ends

- At a dead end, jump to a random web page with prob. 1/N.
- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of $0.1 / \mathrm{N}$).
- With remaining probability (90%), go out on a random hyperlink.
- For example, if the page has 4 outgoing links: randomly choose one with probability (1-0.10)/4=0.225
- 10% is a parameter, the teleportation rate.
" Note: "jumping" from dead end is independent of teleportation rate.

Result of teleporting

Result of teleporting

- With teleporting, we cannot get stuck in a dead end.

Result of teleporting

- With teleporting, we cannot get stuck in a dead end.
- But even without dead ends, a graph may not have well-defined long-term visit rates.

Result of teleporting

- With teleporting, we cannot get stuck in a dead end.
- But even without dead ends in the original graph, we may not have well-defined long-term visit rates.
- More generally, we require that the Markov chain be ergodic.

Ergodic Markov chains

- A Markov chain is ergodic if it is irreducible and aperiodic.

Ergodic Markov chains

- A Markov chain is ergodic if it is irreducible and aperiodic.
- Irreducibility. Roughly: there is a path from any other page.

Ergodic Markov chains

- A Markov chain is ergodic if it is irreducible and aperiodic.
- Irreducibility. Roughly: there is a path from any other page.
- Aperiodicity. Roughly: The pages cannot be partitioned such that the random walker visits the partitions sequentially.

Ergodic Markov chains

- A Markov chain is ergodic if it is irreducible and aperiodic.
- Irreducibility. Roughly: there is a path from any other page.
- Aperiodicity. Roughly: The pages cannot be partitioned such that the random walker visits the partitions sequentially.
- A non-ergodic Markov chain:

Ergodic Markov chains

Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.

Ergodic Markov chains

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.

Ergodic Markov chains

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.

Ergodic Markov chains

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.

Ergodic Markov chains

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.
- Teleporting makes the web graph ergodic.

Ergodic Markov chains

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.
- Teleporting makes the web graph ergodic.
- \Longrightarrow Web-graph+teleporting has a steady-state probability distribution.

Ergodic Markov chains

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.
- Teleporting makes the web graph ergodic.
- \Longrightarrow Web-graph+teleporting has a steady-state probability distribution.
- \Longrightarrow Each page in the web-graph+teleporting has a PageRank.

Formalization of "visit": Probability vector

Formalization of "visit": Probability vector

- A probability (row) vector $\vec{x}=\left(x_{1}, \ldots, x_{N}\right)$ tells us where the random walk is at any point.

Formalization of "visit": Probability vector

- A probability (row) vector $x=\left(x_{1}, \ldots, x_{N}\right)$ tells us where the random walk is at any point.
- Example ($\left.\begin{array}{cccccccccc}0 & 0 & 0 & \ldots & 1 & \ldots & 0 & 0 & 0 &) \\ 1 & 2 & 3 & \ldots & i & \ldots . & \mathrm{N}-2 & \mathrm{~N}-1 & \mathrm{~N}\end{array}\right)$

Formalization of "visit": Probability vector

- A probability (row) vector $x=\left(x_{1}, \ldots, x_{N}\right)$ tells us where the random walk is at any point.
- Example ($\left.\begin{array}{ccccccccccc}0 & 0 & 0 & \ldots & 1 & \ldots & 0 & 0 & 0 &) \\ 1 & 2 & 3 & \ldots & i & \ldots & \mathrm{~N}-2 & \mathrm{~N}-1 & \mathrm{~N}\end{array}\right)$
- More generally: the random walk is on the page i with probability x_{i}.

Formalization of "visit": Probability vector

- A probability (row) vector $x=\left(x_{1}, \ldots, x_{N}\right)$ tells us where the random walk is at any point.
- Example ($\left.\begin{array}{ccccccccccc}0 & 0 & 0 & \ldots & 1 & \ldots & 0 & 0 & 0 &) \\ 1 & 2 & 3 & \ldots & i & \ldots & \mathrm{~N}-2 & \mathrm{~N}-1 & \mathrm{~N}\end{array}\right)$
- More generally: the random walk is on the page i with probability x_{i}.
- Example:
$\left(\begin{array}{ccccccccc}0.05 & 0.01 & 0.0 & \ldots & 0.2 & \ldots & 0.01 & 0.05 & 0.03 \\ 1 & 2 & 3 & \ldots & i & \ldots & \mathrm{~N}-2 & \mathrm{~N}-1 & \mathrm{~N}\end{array}\right)$

Formalization of "visit": Probability vector

- A probability (row) vector $x=\left(x_{1}, \ldots, x_{N}\right)$ tells us where the random walk is at any point.
- Example ($\left.\begin{array}{ccccccccccc}0 & 0 & 0 & \ldots & 1 & \ldots & 0 & 0 & 0 &) \\ 1 & 2 & 3 & \ldots & i & \ldots & \mathrm{~N}-2 & \mathrm{~N}-1 & \mathrm{~N}\end{array}\right)$
- More generally: the random walk is on the page i with probability x_{i}.
- Example:
$\left(\begin{array}{ccccccccc}0.05 & 0.01 & 0.0 & \ldots & 0.2 & \ldots & 0.01 & 0.05 & 0.03 \\ 1 & 2 & 3 & \ldots & i & \ldots & \mathrm{~N}-2 & \mathrm{~N}-1 & \mathrm{~N}\end{array}\right)$
- $\quad \Sigma x_{i}=1$

Change in probability vector

- If the probability vector is $\vec{x}=\left(x_{1}, \ldots, x_{N}\right)$, at this step, what is it at the next step?

Change in probability vector

- If the probability vector is $\vec{x}=\left(x_{1}, \ldots, x_{N}\right)$, at this step, what is it at the next step?
- Recall that row i of the transition probability matrix P tells us where we go next from state i.

Change in probability vector

- If the probability vector is $\vec{x}=\left(x_{1}, \ldots, x_{N}\right)$, at this step, what is it at the next step?
- Recall that row i of the transition probability matrix P tells us where we go next from state i.
- So from \vec{x}, our next state is distributed as $\vec{x} P$.

Steady state in vector notation

Steady state in vector notation

- The steady state in vector notation is simply a vector $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{\mathrm{N}}\right)$ of probabilities.

Steady state in vector notation

- The steady state in vector notation is simply a vector $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{N}\right)$ of probabilities.
- (We use $\vec{\pi}$ to distinguish it from the notation for the probability vector x.)

Steady state in vector notation

- The steady state in vector notation is simply a vector $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{\mathrm{N}}\right)$ of probabilities.
- (We use $\vec{\pi}$ to distinguish it from the notation for the probability vector x.)
- π is the long-term visit rate (or PageRank) of page i.

Steady state in vector notation

- The steady state in vector notation is simply a vector $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{\mathrm{N}}\right)$ of probabilities.
- (We use $\vec{\pi}$ to distinguish it from the notation for the probability vector x.)
- π is the long-term visit rate (or PageRank) of page i.
- So we can think of PageRank as a very long vector one entry per page.

Steady-state distribution: Example

Steady-state distribution: Example

- What is the PageRank / steady state in this example?

Steady-state distribution: Example

Steady-state distribution: Example

	x_{1}	x_{2}		
	$P_{t}\left(d_{1}\right)$	$P_{t}\left(d_{2}\right)$		
			$P_{11}=0.25$	$P_{12}=0.75$
			$P_{21}=0.25$	$P_{22}=0.75$
t_{0}	0.25	0.75		
t_{1}				

PageRank vector $\overrightarrow{=} \pi=\left(\pi_{1}, \pi_{2}\right)=(0.25,0.75)$
$P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21}$
$P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}$

Steady-state distribution: Example

	x_{1}	x_{2}		
	$P_{t}\left(d_{1}\right)$	$P_{t}\left(d_{2}\right)$		
			$P_{11}=0.25$	$P_{12}=0.75$
			$P_{21}=0.25$	$P_{22}=0.75$
t_{0}	0.25	0.75	0.25	0.75
t_{1}				

PageRank vector $\overrightarrow{=} \pi=\left(\pi_{1}, \pi_{2}\right)=(0.25,0.75)$
$P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21}$
$P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}$

Steady-state distribution: Example

	x_{1}	x_{2}		
	$P_{+}\left(d_{1}\right)$	$P_{+}\left(d_{2}\right)$		
			$P_{11}=0.25$	$P_{12}=0.75$
			$P_{21}=0.25$	$P_{22}=0.75$
t_{0}	0.25	0.75	0.25	0.75
t_{1}	0.25	0.75		

PageRank vector $\overrightarrow{=} \pi=\left(\pi_{1}, \pi_{2}\right)=(0.25,0.75)$
$P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21}$
$P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}$

Steady-state distribution: Example

	x_{1}	x_{2}		
	$P_{+}\left(d_{1}\right)$	$P_{+}\left(d_{2}\right)$		
			$P_{11}=0.25$	$P_{12}=0.75$
			$P_{21}=0.25$	$P_{22}=0.75$
t_{0}	0.25	0.75	0.25	0.75
t_{1}	0.25	0.75	(convergence)	

PageRank vector $\overrightarrow{=} \pi=\left(\pi_{1}, \pi_{2}\right)=(0.25,0.75)$
$P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21}$
$P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}$

How do we compute the steady state vector?

How do we compute the steady state vector?

- In other words: how do we compute PageRank?

How do we compute the steady state vector?

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{N}\right)$ is the PageRank vector, the vector of steady-state probabilities ...

How do we compute the steady state vector?

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{N}\right)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is x, then the distribution in the next step is $x P$.

How do we compute the steady state vector?

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{N}\right)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this ste \vec{p} is x, then the distribution in the next step is $x P$.
- But $\vec{\pi}$ is the steady state!

How do we compute the steady state vector?

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{N}\right)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is x, then the distribution in the next step is $x P$.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi}=\vec{\pi} P$

How do we compute the steady state vector?

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{N}\right)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is x, then the distribution in the next step is $x P$.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi}=\vec{\pi} P$
- Solving this matrix equation gives us π.

How do we compute the steady state vector?

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{N}\right)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is x, then the distribution in the next step is $x P$.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi}=\vec{\pi} P$
- Solving this matrix equation gives us π.
- $\vec{\pi}$ is the principal left eigenvector for P...

How do we compute the steady state vector?

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{N}\right)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is x, then the distribution in the next step is $x P$.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi}=\vec{\pi} P$
- Solving this matrix equation gives us π.
- $\vec{\pi}$ is the principal left eigenvector for P...
- ... that is, π is the left eigenvector with the largest eigenvalue.

How do we compute the steady state vector?

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{N}\right)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is x, then the distribution in the next step is $x P$.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi}=\vec{\pi} P$
- Solving this matrix equation gives us π.
- $\vec{\pi}$ is the principal left eigenvector for P...
- ... that is, π is the left eigenvector with the largest eigenvalue.
- All transition probability matrices have largest eigenvaluẽ

One way of computing the PageRañk π

One way of computing the PageRañk π

- Start with any distribution x, e.g., uniform distribution

One way of computing the PageRank π

- Start with any distribution x, e.g., uniform distribution
- After one step, we're ät xP.

One way of computing the PageRañk π

- Start with any distribution x, e.g., uniform distribution
- After one step, we're ảt xP.
- After two steps, we're àt $x P^{2}$.

One way of computing the PageRañk π

- Start with any distribution x, e.g., uniform distribution
- After one step, we're ảt xP.
- After two steps, we're àt $x P^{2}$.
- After k steps, we're ảt $x P^{k}$.

One way of computing the PageRañk π

- Start with any distribution x, e.g., uniform distribution
- After one step, we're ảt xP.
- After two steps, we're àt $x P^{2}$.
- After k steps, we're ảt $x P^{k}$.
- Algorithm: multiply x by increasing powers of P until convergence.

One way of computing the PageRañk π

- Start with any distribution x, e.g., uniform distribution
- After one step, we're ảt xP.
- After two steps, we're att $x P^{2}$.
- After k steps, we're ăt $x P^{k}$.
- Algorithm: multiply x by increasing powers of P until convergence.
- This is called the power method.

One way of computing the PageRañk π

- Start with any distribution x, e.g., uniform distribution
- After one step, we're ảt xP.
- After two steps, we're ảt $x P^{2}$.
- After k steps, we're ăt $x P^{k}$.
- Algorithm: multiply x by increasing powers of P until convergence.
- This is called the power method.
- Recall: regardless of where we start, we eventually reach the steady state π.

One way of computing the PageRañk π

- Start with any distribution x, e.g., uniform distribution
- After one step, we're ảt xP.
- After two steps, we're ảt $x P^{2}$.
- After k steps, we're ăt $x P^{k}$.
- Algorithm: multiply x by increasing powers of P until convergence.
- This is called the power method.
- Recall: regardless of where we start, we eventually reach the steady state π.
- Thus: we will eventually (in asymptotia) reach the steady state.

Power method: Example

Power method: Example

- What is the PageRank / steady state in this example?

Computing PageRank: Power Example

Computing PageRank: Power Example

	$\begin{aligned} & x_{1} \\ & P_{t}\left(d_{1}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & x_{2} \\ & P_{t}\left(d_{2}\right) \end{aligned}$		
			$\begin{array}{ll} P_{11}=0.1 & P_{12}=0.9 \\ P_{21}=0.3 & P_{27}=0.7 \end{array}$	
t_{0}	0	1		$=\vec{x} P$
t_{1}				$=\vec{x} P^{2}$
t_{2}				$=X P^{3}$
t_{3}				$=\underset{X}{ } P^{4}$
t_{∞}				$=\vec{x} P^{\text {a }}$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Computing PageRank: Power Example

	x_{1}	x_{2}			
	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{1}\right)$	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{2}\right)$			
			$P_{11}=0.1$	$P_{12}=0.9$	
		$P_{21}=0.3$	$P_{27}=0.7$		
t_{0}	0	1	0.3	0.7	$=\vec{x} P$
t_{1}				$=\vec{x} P^{2}$	
t_{2}				$=\vec{x} P^{3}$	
t_{3}				$=\vec{x} P^{4}$	
				\cdots	
t_{∞}					

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Computing PageRank: Power Example

	$\begin{aligned} & x_{1} \\ & P_{t}\left(d_{1}\right) \end{aligned}$	$\begin{aligned} & x_{2} \\ & P_{t}\left(d_{2}\right) \end{aligned}$			
			$\begin{aligned} & P_{11}=0.1 \\ & P_{21}=0.3 \end{aligned}$	$\begin{aligned} & P_{12}=0.9 \\ & P_{17}=0.7 \end{aligned}$	
t_{0}	0	1	0.3	0.7	$=\vec{x} P$
t_{1}	0.3	0.7			$=\vec{x} P^{2}$
t_{2}					$=X P^{3}$
t_{3}					$=\overrightarrow{\mathrm{x}} \mathrm{P}^{4}$
t_{∞}					\cdots $=\vec{x} P^{\text {a }}$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Computing PageRank: Power Example

	$\begin{aligned} & x_{1} \\ & P_{t}\left(d_{1}\right) \end{aligned}$	$\begin{aligned} & x_{2} \\ & P_{t}\left(d_{2}\right) \end{aligned}$			
			$\begin{aligned} & P_{11}=0.1 \\ & P_{21}=0.3 \end{aligned}$	$\begin{aligned} & P_{12}=0.9 \\ & P_{27}=0.7 \end{aligned}$	
t_{0}	0	1	0.3	0.7	$=\vec{x} P$
t_{1}	0.3	0.7	0.24	0.76	$=\vec{x} P^{2}$
t_{2}					$=X P^{3}$
t_{3}					$=\bar{X} P^{4}$
t_{∞}					\cdots $=\vec{x} P^{\text {a }}$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Computing PageRank: Power Example

	$\begin{aligned} & x_{1} \\ & P_{t}\left(d_{1}\right) \end{aligned}$	$\begin{aligned} & x_{2} \\ & P_{t}\left(d_{2}\right) \end{aligned}$			
			$\begin{aligned} & P_{11}=0.1 \\ & P_{21}=0.3 \end{aligned}$	$\begin{aligned} & P_{12}=0.9 \\ & P_{27}=0.7 \end{aligned}$	
t_{0}	0	1	0.3	0.7	$=\vec{x} P$
t_{1}	0.3	0.7	0.24	0.76	$=\vec{x} P^{2}$
t_{2}	0.24	0.76			$=X P^{3}$
t_{3}					$=\bar{X} P^{4}$
t_{∞}					$\cdots{ }^{\cdots}{ }^{\text {a }}{ }^{\text {P }}$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Computing PageRank: Power Example

	x_{1}	x_{2}			
	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{1}\right)$	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{2}\right)$			
			$P_{11}=0.1$	$P_{12}=0.9$	
			$P_{21}=0.3$	$P_{22}=0.7$	
t_{0}	0	1	0.3	0.7	$=\vec{x} P$
t_{1}	0.3	0.7	0.24	0.76	$=\vec{x} P^{2}$
t_{2}	0.24	0.76	0.252	0.748	$=\vec{x} P^{3}$
t_{3}					$=\vec{x} P^{4}$
					\cdots
t_{∞}					$=\vec{x} P^{\infty}$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Computing PageRank: Power Example

	x_{1}	x_{2}			
	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{1}\right)$	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{2}\right)$			
			$P_{11}=0.1$	$P_{12}=0.9$	
			$P_{21}=0.3$	$P_{22}=0.7$	
t_{0}	0	1	0.3	0.7	$=\vec{x} P$
t_{1}	0.3	0.7	0.24	0.76	$=\vec{x} P^{2}$
t_{2}	0.24	0.76	0.252	0.748	$=\vec{x} P^{3}$
t_{3}	0.252	0.748			$=\vec{x} P^{4}$
					\cdots
t_{∞}					$=\vec{x} P^{\infty}$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Computing PageRank: Power Example

	x_{1}	x_{2}			
	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{1}\right)$	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{2}\right)$			
			$P_{11}=0.1$	$P_{12}=0.9$	
			$P_{21}=0.3$	$P_{22}=0.7$	
t_{0}	0	1	0.3	0.7	$=\vec{x} P$
t_{1}	0.3	0.7	0.24	0.76	$=\vec{x} P^{2}$
t_{2}	0.24	0.76	0.252	0.748	$=x P^{3}$
t_{3}	0.252	0.748	0.2496	0.7504	$=\vec{x} P^{4}$
					\cdots
t_{∞}					$=\vec{x} P^{\infty}$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Computing PageRank: Power Example

	x_{1}	x_{2}			
	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{1}\right)$	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{2}\right)$			
			$P_{11}=0.1$	$P_{12}=0.9$	
			$P_{21}=0.3$	$P_{22}=0.7$	
t_{0}	0	1	0.3	0.7	$=\vec{x} P$
t_{1}	0.3	0.7	0.24	0.76	$=\vec{x} P^{2}$
t_{2}	0.24	0.76	0.252	0.748	$=x P^{3}$
t_{3}	0.252	0.748	0.2496	0.7504	$=\vec{x} P^{4}$
				\ldots	\cdots
t_{∞}					$=\vec{x} P^{\infty}$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Computing PageRank: Power Example

	x_{1}	x_{2}			
	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{1}\right)$	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{2}\right)$			
			$P_{11}=0.1$	$P_{12}=0.9$	
			$P_{21}=0.3$	$P_{22}=0.7$	
t_{0}	0	1	0.3	0.7	$=\vec{x} P$
t_{1}	0.3	0.7	0.24	0.76	$=\vec{x} P^{2}$
t_{2}	0.24	0.76	0.252	0.748	$=x P^{3}$
t_{3}	0.252	0.748	0.2496	0.7504	$=\vec{x} P^{4}$
				\ldots	\cdots
t_{∞}	0.25	0.75			$=\vec{x} P^{\infty}$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Computing PageRank: Power Example

	$\begin{aligned} & x_{1} \\ & P_{t}\left(d_{1}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & x_{2}\left(d_{1}\right. \\ & P_{t}\left(y_{2}\right. \end{aligned}$			
			$\begin{aligned} & P_{11}=0.1 \\ & P_{21}=0.3 \end{aligned}$	$\begin{aligned} & P_{12}=0.9 \\ & P_{27}=0.7 \end{aligned}$	
t_{0}	0	1	0.3	0.7	= $\overrightarrow{\mathrm{x}} \mathrm{P}$
t_{1}	0.3	0.7	0.24	0.76	$=\stackrel{\text { ¢ }}{ }{ }^{2}$
t_{2}	0.24	0.76	0.252	0.748	$=x{ }^{3}$
t_{3}	0.252	0.748	0.2496	0.7504	$=\mathrm{xP}^{4}$
t 。	0.25	0.75	0.25	0.75	$=\vec{x}^{\text {P }}$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Computing PageRank: Power Example

	x_{1}	x_{2}			
	$P_{t}\left(d_{1}\right)$	$P_{t}\left(d_{2}\right)$			
			$P_{11}=0.1$	$P_{12}=0.9$	
		$P_{21}=0.3$	$P_{22}=0.7$		
t_{0}	0	1	0.3	0.7	$=\vec{x} P$
t_{1}	0.3	0.7	0.24	0.76	$=\vec{x} P^{2}$
t_{2}	0.24	0.76	0.252	0.748	$=\vec{x} P^{3}$
t_{3}	0.252	0.748	0.2496	0.7504	$=\vec{x} P^{4}$
t_{∞}	0.25	0.75	0.25	0.75	$=\vec{x} P^{\infty}$

PageRank vector $\overrightarrow{=} \pi=\left(\pi_{1}, \pi_{2}\right)=(0.25,0.75)$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Power method: Example

- What is the PageRank / steady state in this example?

- The steady state distribution (= the PageRanks) in this example are 0.25 for d_{1} and 0.75 for d_{2}.

Exercise: Compute PageRank using power method

Exercise: Compute PageRank using power method

Solution

Solution

	$\begin{aligned} & x_{1} \\ & \mathrm{P}_{\mathrm{t}}\left(\mathrm{~d}_{1}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{x}_{2} \\ & \mathrm{P}_{\mathrm{t}}\left(\mathrm{~d}_{2}\right) \\ & \hline \end{aligned}$	
			$\begin{array}{ll} P_{11}=0.7 & P_{12}=0.3 \\ P_{21}=0.2 & P_{22}=0.8 \end{array}$
t_{0}	0	1	
t_{1}			
t_{2} t_{3}			
t_{∞}			

PageRank vector $\geqq \pi=\left(\pi_{1}, \pi_{2}\right)=(0.4,0.6)$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Solution

PageRank vector $\geqq \pi=\left(\pi_{1}, \pi_{2}\right)=(0.4,0.6)$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Solution

	$\begin{aligned} & x_{1} \\ & P_{t}\left(d_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{2} \\ & \mathrm{P}_{\mathrm{t}}\left(\mathrm{~d}_{2}\right) \end{aligned}$		
			$\begin{aligned} & P_{11}=0.7 \\ & P_{21}=0.2 \end{aligned}$	$\begin{aligned} & P_{12}=0.3 \\ & P_{22}=0.8 \end{aligned}$
t_{0}	0	1	0.2	0.8
t_{1}	0.2	0.8		
t_{2}				
t_{3}				
t_{∞}				

PageRank vector $\geqq \pi=\left(\pi_{1}, \pi_{2}\right)=(0.4,0.6)$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Solution

PageRank vector $\geqq \pi=\left(\pi_{1}, \pi_{2}\right)=(0.4,0.6)$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Solution

	$\begin{aligned} & x_{1} \\ & P_{t}\left(d_{1}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{x}_{2} \\ & \mathrm{P}_{\mathrm{t}}\left(\mathrm{~d}_{2}\right) \end{aligned}$		
			$\begin{aligned} & P_{11}=0.7 \\ & P_{21}=0.2 \end{aligned}$	$\begin{aligned} & P_{12}=0.3 \\ & P_{22}=0.8 \end{aligned}$
t_{0}	0	1	0.2	0.8
t_{1}	0.2	0.8	0.3	0.7
t_{2}	0.3	0.7		
t_{3}				
t_{∞}				

PageRank vector $\geqq \pi=\left(\pi_{1}, \pi_{2}\right)=(0.4,0.6)$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Solution

	$\begin{aligned} & x_{1} \\ & P_{t}\left(d_{1}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{x}_{2} \\ & \mathrm{P}_{\mathrm{t}}\left(\mathrm{~d}_{2}\right) \\ & \hline \end{aligned}$		
			$\begin{aligned} & P_{11}=0.7 \\ & P_{21}=0.2 \end{aligned}$	$\begin{aligned} & P_{12}=0.3 \\ & P_{22}=0.8 \end{aligned}$
t_{0}	0	1	0.2	0.8
t_{1}	0.2	0.8	0.3	0.7
t_{2}	0.3	0.7	0.35	0.65
t_{3}				
$t_{\text {m }}$				

PageRank vector $\geqq \pi=\left(\pi_{1}, \pi_{2}\right)=(0.4,0.6)$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Solution

	x_{1}	x_{2}		
	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{1}\right)$	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{2}\right)$		
			$P_{11}=0.7$	$P_{12}=0.3$
			$P_{21}=0.2$	$P_{22}=0.8$
t_{0}	0	1	0.2	0.8
t_{1}	0.2	0.8	0.3	0.7
t_{2}	0.3	0.7	0.35	0.65
t_{3}	0.35	0.65		
t_{∞}				

PageRank vector $\equiv \pi=\left(\pi_{1}, \pi_{2}\right)=(0.4,0.6)$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Solution

	x_{1}	x_{2}		
	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{1}\right)$	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{2}\right)$		
			$P_{11}=0.7$	$P_{12}=0.3$
			$P_{21}=0.2$	$P_{22}=0.8$
t_{0}	0	1	0.2	0.8
t_{1}	0.2	0.8	0.3	0.7
t_{2}	0.3	0.7	0.35	0.65
t_{3}	0.35	0.65	0.375	0.625
t_{∞}				

PageRank vector $\equiv \pi=\left(\pi_{1}, \pi_{2}\right)=(0.4,0.6)$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Solution

	x_{1}	x_{2}		
	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{1}\right)$	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{2}\right)$		
			$P_{11}=0.7$	$P_{12}=0.3$
			$P_{21}=0.2$	$P_{22}=0.8$
t_{0}	0	1	0.2	0.8
t_{1}	0.2	0.8	0.3	0.7
t_{2}	0.3	0.7	0.35	0.65
t_{3}	0.35	0.65	0.375	0.625
t_{∞}				

PageRank vector $\equiv \pi=\left(\pi_{1}, \pi_{2}\right)=(0.4,0.6)$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Solution

	x_{1}	x_{2}		
	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{1}\right)$	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{2}\right)$		
			$P_{11}=0.7$	$P_{12}=0.3$
			$P_{21}=0.2$	$P_{22}=0.8$
t_{0}	0	1	0.2	0.8
t_{1}	0.2	0.8	0.3	0.7
t_{2}	0.3	0.7	0.35	0.65
t_{3}	0.35	0.65	0.375	0.625
t_{∞}	0.4	0.6		

PageRank vector $\overrightarrow{=} \pi=\left(\pi_{1}, \pi_{2}\right)=(0.4,0.6)$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

Solution

	x_{1}	x_{2}		
$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{1}\right)$	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{d}_{2}\right)$			
			$P_{11}=0.7$	$P_{12}=0.3$
			$P_{21}=0.2$	$P_{22}=0.8$
t_{0}	0	1	0.2	0.8
t_{1}	0.2	0.8	0.3	0.7
t_{2}	0.3	0.7	0.35	0.65
t_{3}	0.35	0.65	0.375	0.625
				\cdots
t_{∞}	0.4	0.6	0.4	0.6

PageRank vector $\overrightarrow{=} \pi=\left(\pi_{1}, \pi_{2}\right)=(0.4,0.6)$

$$
\begin{aligned}
& P_{\mathrm{t}}\left(d_{1}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{11}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{21} \\
& P_{\mathrm{t}}\left(d_{2}\right)=P_{\mathrm{t}-1}\left(d_{1}\right) * P_{12}+P_{\mathrm{t}-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

PageRank summary

PageRank summary

- Preprocessing

PageRank summary

- Preprocessing
- Given graph of links, build matrix P

PageRank summary

- Preprocessing
- Given graph of links, build matrix P
- Apply teleportation

PageRank summary

- Preprocessing
- Given graph of links, build matrix P
- Apply teleportation
- From modified matrix, compute π

PageRank summary

- Preprocessing
- Given graph of links, build matrix P
- Apply teleportation
- From modified matrix, compute π
- $\vec{\pi}_{i}$ is the PageRank of page i.

PageRank summary

- Preprocessing
- Given graph of links, build matrix P
- Apply teleportation
- From modified matrix, compute π
- $\vec{\pi}_{i}$ is the PageRank of page i.
- Query processing

PageRank summary

- Preprocessing
- Given graph of links, build matrix P
- Apply teleportation
- From modified matrix, compute π
- $\vec{\pi}_{i}$ is the PageRank of page i.
- Query processing
- Retrieve pages satisfying the query

PageRank summary

- Preprocessing
- Given graph of links, build matrix P
- Apply teleportation
- From modified matrix, compute π
- $\vec{\pi}_{i}$ is the PageRank of page i.
- Query processing
- Retrieve pages satisfying the query
- Rank them by their PageRank

PageRank summary

- Preprocessing
- Given graph of links, build matrix P
- Apply teleportation
- From modified matrix, compute π
- $\vec{\pi}_{i}$ is the PageRank of page i.
- Query processing
- Retrieve pages satisfying the query
- Rank them by their PageRank
- Return reranked list to the user

PageRank issues

- Real surfers are not random surfers.
- Examples of nonrandom surfing: back button, short vs. long paths, bookmarks, directories - and search!
- \rightarrow Markov model is not a good model of surfing.
- But it's good enough as a model for our purposes.
- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.
- Consider the query [video service].
- The Yahoo home page (i) has a very high PageRank and (ii) contains both video and service.
- If we rank all pages containing the query terms according to PageRank, then the Yahoo home page would be top-ranked.
- Clearly not desirable.

How important is PageRank?

- Frequent claim: PageRank is the most important component of web ranking.
- The reality:
- There are several components that are at least as important: e.g., anchor text, phrases, proximity, tiered indexes ...
- Rumor has it that PageRank in his original form (as presented here) now has a negligible impact on ranking!
- However, variants of a page's PageRank are still an essential part of ranking.
- Addressing link spam is difficult and crucial.

